HydroCision Introduces a New Curved Access Set for the Minimally Invasive Percutaneous Discectomy Market

BILLERICA, Mass., November 19, 2009 — HydroCision Inc. (www.hydrocision.com) announced today the launch of its new SpineJet® Percutaneous Curved Access Set for use in herniated disc procedures using its novel cutting-with-water fluidjet technology. “Providing a new curved access set should assist physicians in reaching difficult to approach areas of the back through very small incisions,” says Doug Daniels, President and CEO of HydroCision. “This system will allow a growing number of neurosurgeons, orthopedic surgeons, and interventional pain physicians to help their patients who are seeking a less invasive alternative to treat radicular pain from a contained protruded disc. Given our challenging economic environment, a procedure that can reduce downtime from work will be a real advantage to employees and employers.”

The Company’s SpineJet Percutaneous HydroDiscectomy System uses a high velocity water jet to simultaneously cut and remove nucleus to decompress herniated (bulging) discs, quickly, safely, and effectively—without the collateral thermal or mechanical trauma of other surgical modalities—providing relief to patients suffering from back and/or leg pain.

“Approximately 50% of lumbar disc herniations occur at the L5/S1 level and are difficult, if not impossible, to reach with straight instruments,” states Dr. Gabriel Jasper, M.D., Director, Center for Pain Control, Brick, New Jersey. “In the past, lumbar epidural steroid injections or selective nerve root blocks have been the most effective minimally invasive tools on these herniations.” The ability of these treatments to improve symptoms of nerve root compression commonly referred to as “sciatica” or radiculopathy is well established. However, for patients who continue to suffer radicular or lower back pain radiating down the leg despite traditional medical management (physical therapy, anti-inflammatory medications, narcotics, steroid injections), a major treatment gap has existed between conservative management and progression to surgery. Today, HydroDiscectomy bridges that gap.”

“Due to the very small incision size involved in minimally invasive spine procedures, adequate removal of nucleus compressing the nerve causing the pain has proven challenging and a limiting factor with regard to successful pain relief and good clinical outcomes,” adds Gabrielle Jasper, M.D., “Simply put, it is difficult to introduce classical mechanical disc removal and preparation tools through very small openings and remove enough nucleus to ensure pain relief. HydroDiscectomy is a clinically effective way to perform a discectomy through a tiny annulotomy, or opening, in a disc. The small size of the annulotomy has the potential to reduce recurrence of the herniation, and the absence of nerve retraction can potentially reduce recurrent radiculopathy, or leg pain, that can occur several months after the conventional open discectomy procedure is performed.” Dr. Jasper adds, “The procedure is performed under local anesthesia and on an outpatient basis — my patients return home the same day with no more than a Band-Aid® on their back and can return to work much sooner than with traditional surgery. Also, HydroDiscectomy reduces the need for pain medications. The HydroSurgery approach made possible by the SpineJet Percutaneous HydroDiscectomy System provides physicians with great new tools, empowering us to perform truly minimally invasive percutaneous discectomy procedures that lead to improved clinical outcomes and faster patient recovery.”
HydroCision, The Leader in HydroSurgery, and SpineJet are registered trademarks of HydroCision, Inc.

About HydroCision

HydroCision (www.hydrocision.com) is a leading designer, developer, and distributor of fluidjet-based surgical tools. This new proprietary fluidjet technology is the basis of a new surgical modality, “HydroSurgery,” which has positive clinical experience, novel features and versatility. The Company has developed a broad range of fluidjet-based products to meet the clinical and economic needs of multiple specialties.

##