A Clinical Evaluation of Percutaneous Hydrodiscectomy

Amy Forro Clinical Research Consultant 4-0 Consulting Providence, RI, USA May 16, 2013

Objective

To summarize and report on the clinical data available to date on the SpineJet[™] Hydrodiscectomy System (HydroCision, N. Billerica, MA, USA) for the treatment of herniated nucleus pulposus.

Methods

An independent clinical consultant reviewed all of the clinical data obtained from published literature, pending publications, and data not published on file with Hydrocision, for percutaneous hydrodiscectomy.

Quality analysis was conducted using 5 levels of evidence, ranging from Level I to III with 3 subcategories in Level II, developed by the US Preventive Services Task Force¹, as illustrated in Table 1 below.

Ι	Evidence obtained from at least one properly randomized controlled trial	
II-1	Evidence obtained from well-designed controlled trials without randomization	
II-2	Evidence obtained from well-designed cohort or case-controlled analytic studies, preferably from more than one center or research group	
II-3	Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of penicillin treatment in the 1940's) could also be regarded as this type of evidence	
III	Opinions of respected authorities, based on clinical experience descriptive studies and case reports or reports of expert committees	

Table 1. Quality of Evidence developed by USPSTF.

Evaluation of the effectiveness of percutaneous hydrodiscectomy was determined based upon improvement in radicular symptoms. Short-term success was defined as ≤ 6 months relief and long term success was defined as > 6 months of pain relief based on the criteria used by Parr² and Manchikanti³ in their systematic reviews of lumbar epidural steroid injections.

Evaluation of the safety of percutaneous hydrodiscectomy was based upon the absence of device related serious adverse events as defined by the International Standard ISO 14155:2011.

Results

A total of 10 data sources were available for review: Level I quality of evidence, n=1, Level II-3 quality of evidence, n=4 and Level III quality of evidence, n=5. A total of 309 patients were treated with percutaneous hydrodiscectomy and available for the clinical summary. A summary of study characteristics and results of the review are tabulated in Table 2.

The most important data set for contributing to the overall performance of the SpineJet Hydrodiscectomy System is the Level I and II-3 quality of evidence data with long-term follow-up. The 3 studies comprised of 119 patients, demonstrate consistent long-term success rates ranging from 73- 98.6% and no device related adverse events. ^{4,5,6}

The short-term follow-up data consists of 3 Level II-3 and 3 Level III quality of evidence data sets for a total of 191 patients with consistent success rates of 88-94% and no device related adverse events ^{7, 8, 9, 10, 11}

Two Level III case reports on 2 patients demonstrate short-term effectiveness and positive safety results.

			Conclusion(s)
Study/Methods	Patient Population	Results	<u>Effectiveness</u>
			Short-term relief <u><</u> 6 mos.
			Long-term relief > 6 mos.
			<u>Safety</u>
			No device related SAEs
Cristante, et al.	40 pts. with MRI	Statistically significant	80% Long-term
2013.4	evidence of minor disc	improvement in ODI and leg	effectiveness and positive
	herniation or protrusion	VAS, non-statistical	safety profile.
Level I:	at a single level	improvement in back VAS at	
Randomized,	randomized to open	12-month f/up. Four of 16	
controlled trial	lumbar microdiscectomy	(20%) patients had	
	or percutaneous	subsequent intervention. 1	
	hydrodiscectomy.	post-op infection and 1	
		death related to	
		complications from baseline	
		illness (HIV).	
Wang et al.	69 pts. with confirmed	98.6% excellent and good	98.6% Long-term
2010 ⁵	diagnosis of	response based on MacNab	effectiveness and positive
	uncomplicated lumbar	criteria at 9 months post-	safety profile.
Level II-3:	disc herniation in	op. 1 case of post-op	
Retrospective,	accordance with	infection.	
multi-center	McCulloch criteria and		
	MRI or CT. Mixed type		
	canal stenosis, lumbar		
	spondylolisthesis and		
	migrated nucleus		
	pulposus excluded.		
Jasper 2013 ⁶	30 pts. with dominant	Statistically significant	73% Long-term
	symptom of leg or back	improvement in NRS at 12-	effectiveness and positive
Level II-3:	pain and disc herniation	month follow-up. 73%	safety profile.
Retrospective,	at 1-3 levels confirmed	excellent and good based on	
observational,	by imaging . Excluded	MacNab criteria. Pain	
single center,	sequestered herniation,	medications significantly	
two physician	disc height loss of >50%,	reduced by 53% and 43%	

Table 2. Characteristics of studies of percutaneous hydrodiscectomy for Lumbar HNP.

	severe DDD or	for opieds and NSAIDs	
	osteophytic spinal	for opiods and NSAIDs	
		respectively (p<0.2). No	
	stenosis and spinal instability.	complications reported.	
Han et al. 2009 ⁷	13 pts. with soft disc	Statistically significant	92% short-term
	herniation; 12 with LBP	improvement in ODI, leg	effectiveness and positive
Level II-3:	& radiculopathy, 1 with	and back VAS at mean f/up	safety profile.
Retrospective,	back pain only.	of 5.5 months. 12 pts	
multi-center		excellent and good results	
		based on Odam's criteria.	
		No complications reported	
Hardenbrook et	50 pts. with	94% improvement in back	94% short-term
al. 2013 ⁸	radiculopathy secondary	pain and radiculopathy at	effectiveness and positive
	to lumbar HNP	mean f/up of 4.6 months. 3	safety profile.
Level II-3:	confirmed by MRI at 1-2	patients had recurrent	
Retrospective,	levels. Free fragment,	herniation after successful	
multi-center	central stenosis or bony	treatment. No	
	impingement excluded.	complications reported.	
Lo 2012 ⁹	97 pts. with contained	Statistically significant	88% short-term
	lumbar disc herniation <	improvement in ODI, leg	effectiveness and positive
Level III:	6mm and radiculopathy	and back VAS at mean f/up	safety profile.
Retrospective,	confirmed by imaging.	of 6 months. 88% excellent	
case series	Excluded extruded and	and good based on MacNab	
	sequestered herniation.	criteria. 90% returned to	
		work < 2weeks. No	
		complications reported.	
Borschenko, et	16 pts. with confirmed	Statistically significant	88% short-term
al. 2010 ¹⁰	disc bulging (protrusion	improvement in SF36, leg	effectiveness and positive
	or small disc extrusion)	and back VAS at mean f/up	safety profile.
Level III:	at a single level.	of 6 months. 88% excellent	
Retrospective,		and good based on MacNab	
case series		criteria. No complications	
		reported.	
Kowalkowski	15 pts. with	Statistically significant	93% short-term
201311	radiculopathy secondary	improvement in VAS and	effectiveness and positive
× 1	to subligamentous	ODI at mean f/up of 4	safety profile.
Level III:	lumbar HNP at a single	months. 93% improvement	
Retrospective,	level	in symptoms.	
case series			
Jasper, et al.	1 pt. with LBP greater	Remains pain free at 6	Short-term effectiveness
200512	than leg pain due to large	months. No complications	and positive safety profile.
	left paracentral L5/S1	reported.	
Level III:	disc herniation.		
Case Report			
Gerges, et al.	1 pt. with LBP and	At 2 weeks back pain	Short-term effectiveness
2013 ¹³	radicular pain due to	reduced from 5/10 to 1/10	and positive safety profile.
	L5/S1 moderate left	and leg pain completely	

Level III: Case Report	lateral disc protrusion compressing on L5 nerve	resolved. No complications reported.	
	root.		

Conclusion

The safety and effectiveness data for the percutaneous hydrodiscectomy studies are consistent across all data sources. There are no device related complications and success rates ranged from 73–98.6%. The high success rates combined with the positive safety profile associated with the use of the device are acceptable when weighed against the benefits to the patient. The reported clinical data support the use of the SpineJet Hydrodiscectomy System in the treatment of lumbar herniated nucleous pulposus in this select group of patients.

References

- 1. Berg AO, Allan JD. Introducing the third US Preventive Services Task Force. *Am J Prev Med* 2001;20:21-35.
- 2. Parr A, et al: Lumbar interlaminar epidural injections in managing chronic low back and lower pain extremity pain: A systematic review. *Pain Physician*; 2009; 12:163-188.
- 3. Manchikanti L, Buenaventura RM, Manchikanti KM, et al: Effectiveness of therapeutic lumbar transforaminal epidural steroid injections in managing lumbar spinal pain. *Pain Physician*; 2012; 15:E199-E245.
- 4. Cristante AF, Dias da Rocha I, Marcon RM, et al. Randodmized study comparing lumbar microdiscectomy with SpineJet in the treatment of lumbar disc protrusions. *Publication pending*, 2013.
- 5. Wang W, Xiantong Y, Jianjun C, et al. Treatment of Lumbar Disc Herniation through Percutaneous Hydrodiscectomy. *Chinese J Pain Med*; 2010;16(2):71-75.
- 6. Minimally Invasive Percutaneous Hydrodiscectomy: Preliminary Report on 30 Consecutive Cases. *ePlasty* 2013 publication pending.
- 7. Han HJ, Kim WK, Park CK, et al. Minimally Invasive Percutaneous Hydrodiscectomy: Preliminary Report. *Kor J Spine*; 2009;6(3):187-191.
- 8. Hardenbrook MA, Gannon DP, Younan E, et al. Clinical Outcomes of Patients Treated with Percutaneous Hydrodicectomy for Radiculopathy Seconary to Lumbar Herniated Nucleus Pulposus. *Internet J of Spine Surg*; 2013:ISSN: 1937-8270.
- 9. Lo WC. Minimally Invasive Percutaneous Hydrodiscectomy: Preliminary Report. *Presented at Taiwan Society of Minimally Invasive Spine Surgery, October 13, 2012.*
- 10. Borshchenko I, Baskov A, Sergey M. Percutaneous Lumbar Hydrodiscectomy: pilot experience. 2010; *Publication pending*.
- 11. Kowalkowski T. Preliminary Results of Patients Treated with Percutaneous Hydrodiscectomy for Radiculopathy Seconary to Herniated Nucleus Pulpsus. *Abstract Submitted to ASIPP*; June, 2013.
- 12. Jasper G, Fisher O, Demesmin D. Case Study: Hydrosurgical Decompression of a Large Lumbar Disc Herniation. Case Report 2005, data on file.

13. Gianoukos S, Pitts R, Gerges F. Hydrodiscectomy – a percutaneous technique to treat radicular pain from contained lateral lumbar disc herniations. Accepted for Presentation at The American Society for Regional Anesthesia 2013.